杨建平

2024年03月29日 17:20  点击:[]

杨建平简介

基本信息

姓名:杨建平

出生年月:198411月                             

学位:博士

职称:研究员

工作单位:南华大学(兼职)

研究领域(方向):材料界面调控与高性能化

                  能源/环境相关过程中的材料界面系统

                  能源转化、碳与氮的循环与低碳化、微塑料降解与资源化                 

联系方式:021-67874091

邮箱:jianpingyang@dhu.edu.cn     

电话:021-67874091

个人主页:http://cmse.dhu.edu.cn/08/c4/c14707a198852/page.htm

https://www.x-mol.com/groups/Yang

                                    

 

个人简介

杨建平,男,198411月生,江西吉水人,研究员,英国皇家化学会会士,东华大学博士生导师。从事材料界面调控与高性能化研究,主要研究能源、环境相关过程中的材料界面系统,解决能源转化、碳与氮的循环与低碳化、微塑料降解与资源化等领域的挑战。发表Chemical Society Reviews, Progress in Materials Science,Angewandte Chemie International Edition, Advanced Materials, Matter, Advanced Energy MaterialsSCI论文180余篇,总引用16000多次,ESI高被引24篇,H指数62。主持国家自然科学基金委(重大研究计划培育、优青、面上、青年)、科技部国家外国专家项目、国家留学基金委地区科研合作与高层次人才培养项目、上海市科委、上海市教委等项目26项。担任Environmental Protection Research副主编;EcoMat, Catalysts, Rare Metals,《物理化学学报》、《结构化学》等(青年)编委;中国颗粒学会青年理事、上海稀土学会理事、中国感光学会光催化专业委员会委员、中国纺织工程学会纤维微塑料防控科学与工程科研基地主任等。入选英国皇家化学会Journal of Materials Chemistry A, Chemical Communications, Molecular Systems Design & Engineering新锐科学家 (Emerging Investigators)Wiley中国开放科学高贡献作者、全球前10万名学者、全球前2%顶尖科学家。获上海市浦江人才(2017)、上海市东方学者特聘教授(2017)、上海千人(2018)、教育部霍英东青年基金(2020)、国家优秀青年科学基金(2021)、上海市曙光学者(2022年);获2022年度上海市自然科学二等奖(第一完成人)

 

教育经历

2010/09-2013/06        复旦大学          化学系           博士       

2007/09-2010/06        复旦大学          化学系           硕士       

2003/09-2007/06        华中科技大学      化学系           学士       

 

科研、学术与访学工作经历

2020/11-至今    东华大学             材料科学与工程学院副院长

2016/09-至今    东华大学             材料科学与工程学院校特聘研究员、博士生导师

2015/09-2016/09  澳大利亚莫纳什大学  化学工程系             访问学者     

2014/08-2015/08  澳大利亚伍伦贡大学  超导与电子材料研究所   访问学者     

2013/07-2014/07  澳大利亚伍伦贡大学  超导与电子材料研究所   访问学者    

2013/06-2015/12  同济大学            环境科学与工程学院     博士后       

 

主持或参加科研项目(课题)情况

[1] 国家自然科学基金优秀青年科学基金项目,材料界面设计与组装调控,52122312,主持

[2] 国家自然科学基金重大研究计划(培育项目),高电化学稳定性硅基纳米球互联组装调控研究,92163121,主持

[3] 国家自然科学基金面上项目,基于硝酸盐还原的铁基催化剂界面限域组装调控与机理研究,52172291,主持

[4] 上海市2021年度“科技创新行动计划”自然科学基金(原创探索项目),多尺度功能基元序构组装体的构筑与纤维微塑料降解机制研究,主持

[5] 中央高校基本科研业务费专项资金学科交叉(理工科)重点计划项目,面向纤维微塑料降解转化的功能基元催化剂组装调控制备,主持

[6] 教育部霍英东教育基金会第十七届高等院校青年教师基金,界面构筑合金-介孔碳多级结构材料用于电催化脱氮,171041,主持

[7] 上海市科学技术委员会(上海市外国专家局)外国专家项目,铜基电催化剂界面环境设计与CO2还原性能研究,20WZ2500200,主持

[8] 上海市东方学者特聘教授奖励计划,功能能源与环境材料,主持

[9] 国家自然科学基金青年项目,石墨烯/多孔硅/石墨烯夹层结构设计及其充放电过程研究,51702046,主持

[10] 上海市自然科学基金,限域空间构建单质硅基复合材料及其电化学过程研究,17ZR1401000,主持

 

一、主要论文

[1] J. L. Chen, F. Z. Zhang, M. Kuang, L. Wang, H. P. Wang, Wei Li*, J. P. Yang*. Unveiling Synergy of Strain and Ligand Effects in Metallic Aerogel for Electrocatalytic Polyethylene Terephthalate Upcyling[J]. Proceedings of the National Academy of Sciences, 2024, In Press.

[2] Y. L. Hua, N. Song, Z. Y. Wu, Y. Lan, H. X. Luo, Q. Q. Song, J. P. Yang*. Cu-Fe Synergistic Active Sites Boosts Kinetics of Electrochemical Nitrate Reduction[J]. Advanced Functional Materials, 2024, 34, 2314461.

[3] Z. Y. Wu, Y. H. Song, H. C. Guo, F. T. Xie, Y. T. Cong, M. Kuang*, J. P. Yang*. Tandem Catalysis in Electrocatalytic Nitrate Reduction: Unlocking Efficiency and Mechanism[J]. Interdisciplinary Materials, 2024;1-25.

[4] F. Z. Zhang, J. M. Luo, J. L. Chen, H. X. Luo, M. M. Jiang, C. X. Yang, H. Zhang*, J. Chen, A. G. Dong, J. P. Yang*. Interfacial Assembly of Nanocrystals on Nanofibers with Strong Interaction for Electrocatalytic Nitrate Reduction[J]. Angewandte Chemie International Edition, 2023, 62, e202310383.

[5] H. Zhang, C. Q. Wang, H. X. Luo, J. L. Chen, M. Kuang, J. P. Yang*. Iron Nanoparticles Protected by Chainmail-structured Graphene for Durable Electrocatalytic Nitrate Reduction to Nitrogen[J]. Angewandte Chemie International Edition, 2023, 62, e202217071.

[6] Y. Y. Ma, Y. Wei, W. J. Han, Y. H. Tong, A. J. Song, J. H. Zhang, H. B. Li, X. F. Li, J. P. Yang*. Proton Intercalation/De-intercalation Chemistry in Phenazine-based Anode for Hydronium-ion Batteries[J]. Angewandte Chemie International Edition, 2023, 62, e 202314259.

[7] K. X. Wu, H. Z. Li, S. K. Liang, Y. Y. Ma*, J. P. Yang*. Phenazine-based Compound Realizing Separate Hydrogen and Oxygen Production in Electrolytic Water Splitting[J]. Angewandte Chemie International Edition, 2023, 62, e202303563.

[8] J. L. Chen, L. Y. Zhang, L. Wang, M. Kuang, S. B. Wang*, J. P. Yang*. Toward Carbon Neutrality: Selective Conversion of Waste Plastics into Value-added Chemicals[J]. Matter, 2023, 6, 3322-3347.

[9] H. X. Luo, S. J. Li, Z. Y. Wu, Y. B. Liu, W. Luo, W. Li, D. Q. Zhang*, J. Chen, J. P. Yang*. Modulating the Active Hydrogen Adsorption on Fe-N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-long Stability[J]. Advanced Materials, 2023, 35, 2304695.

[10] F. Z. Zhang, J. Chen*, G. G. Wallace, J. P. Yang*. Engineering Electrocatalytic Fiber Architectures[J]. Progress in Materials Science, 2023, 133, 101069.

[11] L. Wang, S. Jiang, W. K. Gui, H. Z. Li, J. Wu*, H. P. Wang*, J. P. Yang*. Photocatalytic Upcycling of Plastic Waste: Mechanism, Integrating Modus and Selectivity[J]. Small Structures, 2023, 4, 2300142.

[12] H. X. Luo, C. Q. Wang, J. Q. Wang, Y. Y. Ma*, J. P. Yang*. Strong Metal-Support Interactions Strategy for Enhanced Binder-Free Electrocatalytic Nitrate Reduction[J]. Inorganic Chemistry Frontiers, 2023, 10, 4526-4533.

[13] M. H. Li‡, F. Z. Zhang‡, M. Kuang, Y. Y. Ma*, T. Liao, Z. Q. Sun, W. Luo, W. Jiang, J. P. Yang*. Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio[J]. Nano-Micro Letters, 2023, 15, 238.

[14] Z. Y. Wu, Y. H. Song, Y. B. Liu, W. Luo, W. Li, J. P. Yang*, Electrocatalytic Nitrate Reduction: Selectivity at the Crossroad between Ammonia and Nitrogen[J]. Chem Catalysis, 2023, 11, 100786.

[15] Y. Y. Ma, K. X. Wu, T. Long*, J. P. Yang*. Solid-state Redox Mediators for Decoupled H2 Production: Principle and Challenges[J], Advanced Energy Materials, 2023, 13, 2203455.

[16] M. H. Li, N. Song, W. Luo, J. Chen, W. Jiang, J. P. Yang*. Engineering Surface Oxophilicity of Copper for Electrochemical CO2 Reduction to Ethanol[J]. Advanced Science, 2023, 10, 2204579.

[17]  L. Wang, S. S. Yin, J. P. Yang*, S. X. Dou*. Moiré Superlattice Structure in Two-dimensional Catalysts: Synthesis, Property and Activity[J]. Small, 2023, 202300165.

[18] T. H. Yang, M. Kuang*, J. P. Yang*. Tandem Engineering for CO2 Electrolysis toward Multicarbon Products[J]. Nano Research, 2023, 16, 8670-8683.

[19] Y. L. Hua, D. H. Li, J. L. Zou, W. Wang, X. Y. Wu, X. W. Zhang, Q. Liu, G. D. Zhao, M. Li, W.-X. Zhang, J. P. Yang*. Evolutional Solid Phase and Solid-Liquid Interface Uranium Immobilization Mechanisms by Nanoscale Zero-Valent Iron and Enhanced Uranium Stability Control Strategy[J]. Chemical Engineering Journal, 2023, 453, 139924.

[20]  L. Wang, L. Wang*, L. Zhang*, H. K. Liu, J. P. Yang*. Perspective of p-block Single-atom Catalysts for Electrocatalysis[J]. Trends in Chemistry, 2022, 4, 1135-1148.

[21] M. M. Jiang, J. L. Chen, Y. B. Zhang, N. Song*, W. Jiang*, J. P. Yang*. Assembly: A Key Enabler for the Construction of Superior Silicon-based Anodes[J]. Advanced Science, 2022, 9, 2203162.

[22]  C. Q. Wang, Y. B. Zhang, H. X. Luo, H. Zhang*, W. Li, W.-X. Zhang, J. P. Yang*. Iron-Based Nanocatalysts for Electrochemical Nitrate Reduction[J]. Small Methods, 2022, 6, 2200790.

[23] F. F. Ni, J. L. Chen, Z. X. Tai, L. Wang*, L. F. Liu, J. P. Yang*. Iron Nanoparticles Confined in Periodic Mesoporous Organosilicon as Nano-Reactors for Efficient Nitrate Reduction[J]. ACS Applied Nano Materials, 2022, 5, 5149-5157.

[24] X. H. Qu, M. Q. Wang*, M. C. Wang, H. Z. Tang, S. T. Zhang, H. T. Yang, W. E. Yuan, Y. Wang, J. P. Yang*, B. Yue*. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections[J]. Advanced Materials, 2022, 34, 2200096.

[25]  W. M. Liu, M. M. Jiang, F, Z. Zhang, X. Q. Chen*, J. P. Yang*. Confined Self-assembly of SiOC Nanospheres in Graphene Film to Achieve Cycle Stability of Lithium-ion Batteries[J]. New Journal of Chemistry, 2022, 46, 6519-6527.

[26] H. Xu, Y. Y. Ma, J. Chen*, W. -X. Zhang, J. P. Yang*. Electrocatalytic Reduction of Nitrate – A Step towards Sustainable Nitrogen Cycle[J]. Chemical Society Reviews, 2022, 51, 2710-2758.

[27] D. W. Zhou, L. Wang, F. Z. Zhang, J. Wu*, H. P. Wang*, J. P. Yang*. Feasible Degradation of Polyethylene Terephthalate Fiber-Based Microplastics in Alkaline Media with Bi2O3@N-TiO2 Z-Scheme Photocatalytic System[J]. Advanced Sustainable Systems, 2022, 2100516.

[28] F. Z. Zhang, J. Chen*, J. P. Yang*, Fiber Materials for Electrocatalysis Applications[J]. Advanced Fiber Materials, 2022, 4, 720-735.

[29] H. Z. Tang, X. H. Qu*, W. K. Zhang, S. T. Zhang, X. Chen, Y. Xu, H. T. Yang, Y. Wang, J. P. Yang*, W. E. Yuan*, B. Yue*. Photosensitizer Nanodot Eliciting Immunogenicity for Photo-Immunologic Therapy of Postoperative Methicillin-Resistant Staphylococcus Aureus Infection and Secondary Recurrence[J]. Advanced Materials, 2022, 34, 2107300.

[30] J. L. Chen, J. Wu*, P. C. Sherrell, J. Chen, H. P. Wang*, W.-X. Zhang, J. P. Yang*. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling[J]. Advanced Science, 2022, 9, 2103764.

[31] W. J. Han, M. H. Li, Y. Y. Ma*, J. P. Yang*. Dianhydride-based Polyimide as Organic Electrode Materials for Aqueous Hydronium-ion Battery[J], Electrochimica Acta, 2022, 403, 139550.

[32] S. K. Liang, M. M. Jiang, H. X. Luo, Y. Y. Ma*, J. P. Yang*. A High-Rate Electrode with Grotthuss Topochemistry for Membrane-Free Decoupled Acid Water Electrolysis[J]. Advanced Energy Materials, 2021, 11, 2102057.

[33]  F. Z. Zhang, P. C. Sherrell, W. Luo, J. Chen*, W. Li, J. P. Yang*, M. F. Zhu*, Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications[J]. Advanced Science, 2021, 8, 2102859.

[34] Y. L Hua, D. H Li, T. H. Gu, W. Wang, R. F. Li, J. P. Yang*, W-x. Zhang*. Enrichment of Uranium from Aqueous solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect[J]. Acta Chimica Sinica, 2021, 79.

[35] L. Su, F. Z. Zhang, L. J. Wang, X. S. Fang, W. Jiang, J. P. Yang*. Flexible Electrocatalysts: Interfacial-assembly of Iron Nanoparticles for Nitrate Reduction[J]. Chemical Communications, 2021, 57, 6740-6743.

[36] Y. Lan, H. X. Luo, Y. Y. Ma, Y. L. Hua, T. Liao, J. P. Yang*. Synergy between Copper and Iron Sites inside Carbon Nanofibers for Superior Electrocatalytic Denitrification[J]. Nanoscale, 2021, 13, 10108-10115.

[37] G. J. Zhu, C. Tang, M. M. Jiang, A. J. Du, H. J. Zhang*, J. P. Yang*. Regulating the Interfacial Behavior of Carbon Nanotubes for Fast Lithium Storage[J]. Electrochimica Acta, 2021, 388, 138591.

[38] M. Jiang, J. L. Chen, Y. Y. Ma, W. Luo, J. P. Yang*. Electrostatic Interaction to Achieve Hierarchical Interpenetrating Electroconductive Networks of Silicon Anodes for Fast Lithium Storage[J]. Chemistry-A European Journal, 2021, 27, 9320-9327.

[39] F. F. Ni, Y. Y. Ma, J. L. Chen, W. Luo*, J. P. Yang*. Boron-iron Nanochains for Selective Electrocatalytic Reduction of Nitrate[J]. Chinese Chemical Letters, 2021, 32, 2073-2078.

[40] M. H. Li, Y. Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang, J. P. Yang*. Residual Chlorine Induced Cationic Active Species on Porous Cu Electrocatalyst for Highly Stable Electrochemical CO2 Reduction to C2+[J]. Angewandte Chemie, International Edition, 2021, 60, 11487-11493.

[41] W. U. Rehman, F. Z. Zhang, R. Z. A. Manj, Y. Y. Ma, J. P. Yang*. Corncob Derived Porous Carbon Anode for Long-term Cycling in Low-cost Lithium Storage[J]. Journal of Electrochemical Energy Conversion and Storage, 2021.

[42] 陈俊良, 乌婧, 王华平, 杨建平*. 水环境中纤维微塑料去除技术研究展望[J]. 纺织学报2021, 42, 18-25.

[43] F. Z. Zhang, Y. Y. Ma*, M. M. Jiang, W. Luo, J. P. Yang*. Boron Heteroatom Doped Silicon-carbon Peanut-like Composites Enables Long Life Lithium-Ion Batteries[J]. Rare Metals, 2022, 41, 1276-1283.

[44] M. M. Jiang, Y. Y. Ma, J. L. Chen, W. Jiang*, J. P. Yang*. Regulating Carbon Distribution of Anode Materials in Lithium-ion Batteries[J]. Nanoscale, 2021, 13, 3937-3947.

[45] D. W. Zhou, J. L. Chen, J. Wu*, J. P. Yang*, H. P. Wang*. Biodegradation and Catalytic-chemical Degradation Strategies to Mitigate Microplastic Pollution[J]. Sustainable Materials and Technologies, 2021, 28, e00251.

[46] L. Su, J. X. Ma, F. Z. Zhang, Y. C. Fan, W. Luo, L. J. Wang*, W. Jiang, J. P. Yang*. Achieving Effective Broadband Microwave Absorption with Fe3O4@C Supraparticles[J]. Journal of Materiomics, 2021, 7, 80-88.

[47] L. Su, J. P. Yang*, Y. Lan, L. J. Wang, W. Jiang. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36, 561.

[48] M. Jiang, M. M. Jiang, H. Gao, J. L. Chen, W. M. Liu, Y. Y. Ma*, W. Luo, J. P. Yang*. Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon inside Carbon Nanofibers[J]. Acta Metallurgica Sinica (English Letters), 2021, 34, 337-346.

[49] W. U. Rehman‡, H. F. Wang‡, R. Z. A. Manj, W. Luo, J. P. Yang*. When Silicon Materials Meet Natural Sources: Opportunities and Challenges for Low-cost Lithium Storage[J]. Small, 2021, 17, 1904508.

[50] G. J. Zhu, R. Guo, W. Luo, H. K. Liu, W. Jiang, S. X. Dou, J. P. Yang*. Boron Doping-Induced Interconnected Assembly Approach for Mesoporous Silicon Oxycarbide Architecture[J]. National Science Review, 2021, 8, nwaa152.

[51] X. Q. Chen, S. J. Fan, C. Han, T. Wu, L. J. Wang, W. Jiang, W. Dai*, J. P. Yang*. Multiscale Architectures Boosting the Thermoelectric Performance of Copper Sulfide Compound[J]. Rare Metals, 2020, 40, 2017-2025.

[52] W. Hong, L. Su, J. C. Wang, M. Jiang, Y. Y. Ma*, J. P. Yang*. Boosting Electrocatalysis of Nitrate to Nitrogen with Iron Nanoparticles Embedded in Carbon Microspheres[J]. Chemical Communications, 2020, 56, 14685-14688.

[53] W. J. Han, M. H. Li, Y. Y. Ma*, J. P. Yang*. Cobalt-based Metal-organic Frameworks and Their Derivatives for Hydrogen Evolution Reaction[J]. Frontiers in Chemistry, 2020, 8, 592915.

[54] X. Q. Chen, J. P. Yang*, T. Katkus, T. Wu, J. H. Tao, J. Li, C. H. Wang, X. Wang, W. Dai*. Exploring Thermoelectric Property Improvement for Binary Copper Chalcogenides[J]. Frontiers in Materials, 2020, 7, 589568.

[55] M. H. Li, Y. Y. Guo*, J. P. Yang*. Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NOx[J]. ChemCatChem, 2020, 12, 5599-5610.

[56] M. H. Li‡, H. F. Wang‡, W. Luo*, P. C. Sherrell, J. Chen*, J. P. Yang*. Heterogeneous Single-atom Catalysts for Electrochemical CO2 Reduction Reaction[J]. Advanced Materials, 2020, 32, 2001848.

[57] H. Xu, J. Wu, W. Luo, Q. Li, W. X. Zhang, J. P. Yang*. Dendritic Cell-Inspired Designed Architectures towards Highly Efficient Electrocatalysts for Nitrate Reduction Reaction[J]. Small, 2020, 16, 2001775.

[58] G. J. Zhu, M. M. Jiang, Y. Y. Ma, W. Luo, L. J. Wang, W. Jiang, J. P. Yang*. A Carbon Network Strategy to Synthesize Silicon-carbon Anodes toward Regulated Morphologies during Molten Salt Reduction[J]. CrystEngComm, 2020, 22, 4894-4902.

[59] X. Y. Qian, F. Z. Zhang, Y. Y. Zhao, K. Liang*, W. Luo*, J. P. Yang*. Polydopamine-Derived Carbon: What a Critical Role for Lithium Storage?[J]. Frontiers in Energy Research, 2020, 8, 140.

[60] M. Jiang, F. Z. Zhang, G. J. Zhu, Y. Y. Ma, W. Luo, T. F. Zhou, J. P. Yang*. Interface-Amorphized Ti3C2@Si/SiOx@TiO2 Anodes with Sandwiched Structures and Stable Lithium Storage[J]. ACS Applied Materials & Interfaces, 2020, 12, 24796-24805.

[61] Y. Lan, J. L. Chen, H. Zhang, W.-X. Zhang, J. P. Yang*. Fe/Fe3C Nanoparticles Decorated N-doped Carbon Nanofibers for Improving Nitrogen Selectivity of Electrocatalytic Nitrate Reduction[J]. Journal of Materials Chemistry A, 2020, 8, 15853-15863.

[62] F. Z. Zhang, W. Luo, J. P. Yang*. Interface Heteroatom-doping: Emerging Solutions to Silicon-based Anodes[J]. Chemistry-An Asian Journal, 2020, 15, 1394-1404.

[63] F. Z. Zhang, J. P. Yang*. Boosting initial coulombic efficiency of Si-based Anodes: A Review[J]. Emergent Materials, 2020, 3, 369-380.

[64] L. Su, J. X. Ma, J. C. Wang, W. Jiang, W.-x. Zhang, J. P. Yang*. Site-selective Exposure of Iron Nanoparticles to Achieve Rapid Interface Enrichment for Heavy Metals[J]. Chemical Communications, 2020, 56, 2795-2798.

[65] R. Z. A. Manj, F. Z. Zhang, W. U. Rehman, W. Luo, J. P. Yang*. Toward Understanding the Interaction of Silicon-based Anodes for Stable Lithium Storage[J]. Chemical Engineering Journal, 2020, 385, 123821.

[66] X. Y. Qian, G. J. Zhu, K. Wang, F. Z. Zhang, K. Liang*, W. Luo, J. P. Yang*. Bowl-like Mesoporous Polymer-induced Interface Growth of Molybdenum Disulfide for Stable Lithium Storage[J]. Chemical Engineering Journal, 2020, 381, 122651.

[67] G. J. Zhu, W. Jiang, J. P. Yang*. Engineering Carbon Distribution in Silicon-based Anodes at Multiple Scales[J]. Chemistry-A European Journal, 2020, 26, 1488-1496.

[68] G. C. Sun, F. Z. Zhang, Q. S. Xie, W. Luo, J. P. Yang*. Regulating Ambient Pressure Approach to Graphitic Carbon Nitride towards Dispersive Layers and Rich Pyridinic Nitrogen[J]. Chinese Chemical Letters, 2020, 31, 1603-1607.

 

二、授权发明专利

[1] 一种吸附和降解微塑料的双功能碳纤维膜及其制备方法,发明人:杨建平,陈俊良,王华平,乌婧. 授权日:2021.07.06,专利号:ZL202010704013.2

[2] 一种可吸附和降解微塑料的功能化碳纤维膜及其制备方法,发明人:杨建平,陈俊良,王华平,乌婧. 授权日:2021.06.18,专利号:ZL202010705373.4

[3] 一种金属-碳杂化材料及其制备方法,发明人:杨建平,陈俊良,乌婧,周大旺,王华平. 授权日:2021.12.21,专利号:202010703996.8

[4] 一种超细尺寸金属-PAN基碳纤维及其制备方法,发明人:杨建平,陈俊良,乌婧,王华平,马元元. 授权日:2021.07.06,专利号:ZL202010705375.3

[5] 一种硼掺杂碳纳米管及其制备和应用,发明人:杨建平,朱冠家,罗维,江莞. 授权日:2020.06.16,专利号:2020101009969

[6] 一种铜钯双金属负载介孔碳与碳纳米管复合材料的制备,发明人:杨建平,徐慧. 授权日:2021.03.19,专利号:ZL202010062674.X

[7] 一种硼掺杂硅基复合负极材料及其制备方法和应用,发明人:杨建平, 朱冠家, 罗维, 王连军, 江莞. 授权日:2019.07.30,专利号:201910295525.5

[8] 一种硅-氮化碳复合负极材料及其制备和应用,发明人:杨建平, 孙广超, 张方舟, 洪文, 江敏, 罗维. 授权日:2021.08.10,专利号:ZL201811350516.3

[9] 一种多孔空心碳球负载一硫化锡纳米量子点复合电极材料,发明人:杨建平, 李丽, 钱小勇, 倪凡凡, 罗维. 授权日:2018.12.11,专利号:201811109476.3

[10] 一种高性能硅-碳纳米复合负极材料及其制备方法,发明人:杨建平, 朱冠家, 罗维, 李丽. 授权日:2018.08.21,专利号:ZL201810261003.9

[11] 一种八硫化五钒粉体的制备方法及其应用,发明人:杨建平, 李丽, 廖开明,张方舟, 方浩, 孙广超, 王凯, 罗维, 王连军, 江莞. 授权日:2020.04.30,专利号:ZL2017143923.5

[12] 一种用于去除水中持久性有机污染物的纳米零价铁介孔碳非对称结构材料的制备方法及应用,发明人:杨建平, 王青青, 陈苗, 罗维, 蒋伟忠, 王连军, 江莞. 授权日:2020.11.10,专利号: ZL201710873510.3

[13] 一种羟基磷灰石基荧光陶瓷材料及其制备方法,发明人:王连军, 黄平, 田元, 顾士甲, 杨蓬, 郑雅茹, 周蓓莹, 罗维, 杨建平, 范宇驰, 江莞. 授权日:2020.04.21,专利号:ZL201710257438.1

[14] 一种油胺掺杂n型碳纳米管热电材料及其制备方法和应用,发明人:王连军, 孙婷婷, 杨建平, 范宇驰, 罗维, 江莞. 授权日:2020.08.11,专利号:ZL201910011495.0

[15] 一种柔性热电纳米纤维薄膜及其制备和应用,发明人:王连军, 金胜男,孙婷婷, 杨建平, 范宇驰, 罗维, 江莞. 授权日:2021.12.11,专利号:201811177929.6

[16] 一种线圈状热电单元、织物结构热电器件及其制备和应用,发明人:王连军, 孙婷婷, 杨建平, 范宇驰, 罗维, 江莞. 授权日:2020.10.20,专利号:ZL 201811473051.0

[17] 一种实心Fe3O4@C超结构微球吸波材料及其制备方法和应用发明人:王连军苏莉杨建平马家鑫郑琦范宇驰刘付胜聪江莞. 授权日:2021.05.04,专利号: ZL202010062692.8

[18] 一种用于去除水中大分子肝毒素的介孔碳有机复合膜的制备方法,发明人:张伟贤,滕玮,范建伟,冉献强,杨建平,张颖纯,白楠,陈旺源,王晓敏,勾晓. 授权日:2017.7.11,专利号:ZL20151031056.5

[19] 一种高分散纳米金属单质/碳复合材料可控制备方法及其电催化应用,发明人:滕玮,张伟贤,范建伟,冉献强,杨建平,吕梦华,许华伟. 授权日:2018.12.04,专利号:ZL201610358771.7

[20] 一种去除水体硝酸盐的双金属催化剂Pd@Cu-BTC的制备方法及其应用发明人:范建伟白楠孙宇杨建平滕玮邹立寅吕梦华许华伟陈泽涵牛旭飞. 授权日:2018.7.27,专利号: ZL201610155082.6

[21] 一种金属纳米颗粒均匀嵌入孔壁结构的有序介孔碳电催化剂的可控制备方法,发明人:范建伟,陈旺源,冉献强,滕玮,杨建平,王晓敏,勾晓,张颖纯,白楠. 授权日: 2018.04.27, 专利号: ZL201510310771.5

上一条:吴晓燕(女)
下一条:李鹏程

关闭

联系我们

地址:湖南省衡阳市常胜西路28号南华大学    邮编:421001
联系电话:0734-8282206    联系邮箱:zhausc@163.com

师德师风投诉电话

0734-8281738(教务办公室)
0734-8282206(院党政办公室)

版权所有:南华大学资源环境与安全工程学院

技术支持:西安恒远翼展信息技术有限公司